# Polynomial Curve Fitting

Article by:

## Overview

Before reading this page, please check out the Linear Curve Fitting page. Many of the principles mentioned there will be re-used here, and will not be explained in as much detail.

## Calculating The Polynomial Curve

We can write an equation for the error as follows:

\begin{align} err & = \sum d_i^2 \nonumber \\ & = (y_1 - f(x_1))^2 + (y_2 - f(x_2))^2 + (y_3 - f(x_3))^2 \nonumber \\ & = \sum_{i = 1}^{n} (y_i - f(x_i))^2 \end{align}

where:
$$n$$ is the number of points of data (each data point is an $$x, y$$ pair)
$$f(x)$$ is the function which describes our polynomial curve of best fit

Since we want to fit a polynomial, we can write $$f(x)$$ as:

\begin{align} f(x) &= a_0 + a_1 x + a_2 x^2 + ... + a_n x^n \nonumber \\ &= a_0 + \sum_{j=1}^k a_j x^j \end{align}

where:
$$k$$ is the order of the polynomial

Substituting into above:

\begin{align} err = \sum_{i = 1}^{n} (y_i - (a_0 + \sum_{j=0}^k a_j x^j))^2 \end{align}

How do we find the minimum of this error function? We use the derivative. If we can differentiate $$err$$, we have an equation for the slope. We know that the slope will be 0 when the error is at a minimum.

We have $$k$$ unknowns, $$a_0, a_1, ..., a_k$$. We have to take the derivative of each unknown separately:

\begin{align} \frac{\partial err}{\partial a_0} &= -2 \sum_{i=1}^{n} (y_i - (a_0 + \sum_{j=0}^k a_j x_j)) &= 0 \nonumber \\ \frac{\partial err}{\partial a_1} &= -2 \sum_{i=1}^{n} (y_i - (a_0 + \sum_{j=0}^k a_j x_j))x &= 0 \nonumber \\ \frac{\partial err}{\partial a_1} &= -2 \sum_{i=1}^{n} (y_i - (a_0 + \sum_{j=0}^k a_j x_j))x^2 &= 0 \nonumber \\ \vdots \nonumber \\ \frac{\partial err}{\partial a_k} &= -2 \sum_{i=1}^{n} (y_i - (a_0 + \sum_{j=0}^k a_j x_j))x^k &= 0 \\ \end{align}

These equations can be re-arranged into matrix form:

$$\begin{bmatrix} n & \sum x_i & \sum x_i^2 & ... & \sum x_i^k \\ \sum x_i & \sum x_i^2 & \sum x_i^3 & ... & \sum x_i^{k+1} \\ \sum x_i^2 & \sum x_i^3 & \sum x_i^4 & ... & \sum x_i^{k+2} \\ \vdots & \vdots & \vdots & ... & \vdots \\ \sum x_i^k & \sum x_i^{k+1} & \sum x_i^{k+2} & ... & \sum x_i^{k+k} \\ \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \\ \vdots \\ a_k \end{bmatrix} = \begin{bmatrix} \sum (y_i) \\ \sum (x_i y_i) \\ \sum (x_i^2 y_i) \\ \sum (x_i^k y_i) \end{bmatrix}$$

We solve this by re-arranging (which involves taking the inverse of $$\bf{x}$$):

$$\mathbf{x} = \mathbf{A^{-1}} \mathbf{B}$$

Thus a polynomial curve of best fit is:

$$y = x[0] + x[1]x + x[2]x^2 + ... + x[j]x^j$$

See main.py for Python code which performs these calculations.

## Worked Example

Find a 2 degree polynomial that best describes the following points:

$$(1, 1) \\ (2, 3) \\ (3, 4) \\ (4, 8)$$

We will then find the values for each one of the nine elements in the $$\mathbf{A}$$ matrix:

\begin{align} A_{11} &= n = 4 \nonumber \\ A_{12} &= \sum x_i = 1 + 2 + 3 + 4 = 10 \nonumber \\ A_{13} &= \sum x_i^2 = 1^2 + 2^2 + 3^2 + 4^2 = 30 \nonumber \\ A_{21} &= A_{12} = 10 \nonumber \\ A_{22} &= A_{13} = 30 \nonumber \\ A_{23} &= \sum x_i^3 = 1^3 + 2^3 + 3^3 + 4^3 = 100 \nonumber \\ A_{31} &= A_{22} = 30 \nonumber \\ A_{32} &= A_{23} = 100 \nonumber \\ A_{33} &= \sum x_i^4 = 1^4 + 2^4 + 3^4 + 4^4 = 354 \\ \end{align}

And now find the elements of the $$\mathbf{B}$$ matrix:

\begin{align} B_{11} &= \sum y_i = 1 + 3 + 4 + 8 = 16 \nonumber \\ B_{21} &= \sum x_i y_i = 1*1 + 2*3 + 3*4 + 4*8 = 51 \nonumber \\ B_{31} &= \sum x_i^2 y_i = 1^2*1 + 2^2*3 + 3^2*4 + 4^2*8 = 177 \nonumber \\ \end{align}

Plugging these values into the matrix equation:

$$\begin{bmatrix} 4 & 10 & 30 \\ 10 & 30 & 100 \\ 30 & 100 & 354 \end{bmatrix} \begin{bmatrix} a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} 16 \\ 51 \\ 177 \end{bmatrix}$$

We can then solve $$\mathbf{x} = \mathbf{A^{-1}}\mathbf{B}$$ by hand, or use a tool. I used Python’s NumPy package to end up with:

$$\begin{bmatrix}a_0 \\ a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix}1 \\ -0.3 \\ 0.5\end{bmatrix}$$

Thus our line of best fit:

$$y = 1 - 0.3x + 0.5x^2$$

The data points and polynomial of best fit are shown in the below graph:

## Authors

### Geoffrey Hunter

Dude making stuff.