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Abstract. Image-guided interventions often rely on deformable multi-
modal registration to align pre-treatment and intra-operative scans.
There are a number of requirements for automated image registration for
this task, such as a robust similarity metric for scans of different modali-
ties with different noise distributions and contrast, an efficient optimisa-
tion of the cost function to enable fast registration for this time-sensitive
application, and an insensitive choice of registration parameters to avoid
delays in practical clinical use. In this work, we build upon the concept of
structural image representation for multi-modal similarity. Discrimina-
tive descriptors are densely extracted for the multi-modal scans based on
the “self-similarity context”. An efficient quantised representation is de-
rived that enables very fast computation of point-wise distances between
descriptors. A symmetric multi-scale discrete optimisation with diffu-
sion regularisation is used to find smooth transformations. The method
is evaluated for the registration of 3D ultrasound and MRI brain scans for
neurosurgery and demonstrates a significantly reduced registration error
(on average 2.1 mm) compared to commonly used similarity metrics and
computation times of less than 30 seconds per 3D registration.
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1 Introduction

Deformable multi-modal registration plays an important role for image-guided
interventions, where scans are often acquired using different modalities, e.g.
to propagate segmentation information for image-guided radiotherapy [9]. The
alignment of multi-modal scans is difficult, because there can be a large amount
of motion between scans, the intra-operative scan is often of lower scan quality
than diagnostic scans and no functional relationship between intensities across
modalities exists. In this work, we address the registration of intra-operative
3D ultrasound (US) to pre-operative magnetic resonance imaging (MRI) for
image-guided neurosurgery. The brain tissue exhibits non-rigid deformations af-
ter opening the skull (brain shift [11]), which needs to be compensate to relate
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the intra-operative ultrasound to the MRI scan (which has a higher quality and
can give a better guidance for tumour resection).

2 Previous Work

Mutual information (MI) has been frequently used in rigid multi-modal registra-
tion [10, 17]. However, for deformable multi-modal registration, many disadvan-
tages have been identified for MI-based similarity measures [13]. In particular,
the locally varying noise distribution and speckle pattern of ultrasound make the
estimation of a global intensity mapping difficult. The results in [14] suggest that
using standard MI is insufficient for US-MRI registration. The authors propose
the use a multi-feature α-MI metric as presented in [16]. This, however, comes
at a great computational cost, which is a disadvantage for this time sensitive ap-
plication. Another possible approach is to use a simulated ultrasound-like image
based on an MRI [1] or computed tomography (CT) scan [19] for registration.
An accurate ultrasound simulation is, however, far from trivial, especially for
interventional scans.

For these reasons, structural image representations have gained great interest
for deformable multi-modal registration. The motivation is that, once the images
are transformed into a representation independent of the underlying image ac-
quisition, efficient monomodal optimisation techniques can be employed. In [18],
a scalar structural representation based on local entropy has been successfully
applied to the deformable registration of different MRI modalities and the rigid
alignment of MRI and CT brain scans. De Nigris et al. [2] used gradient orienta-
tion to drive a rigid multi-modal registration of brain scans. In [4], we proposed
a multi-dimensional “modality independent neighbourhood descriptor” (MIND)
based on the concept of local self-similarities (LSS) [15] and applied it to the
non-rigid registration of CT and MRI chest scans. Self-similarities were also em-
ployed in [14], however, not as a structural representation, but instead using the
Earth Mover’s Distance as self-similarity distance within the multi-dimensional
feature-space of α-MI. There are a number of limitations of these approaches.
First, scalar representations [18] are often not sufficiently discriminative to drive
a non-rigid registration with many degrees of freedom. Second, high-dimensional
descriptors are often computationally too expensive for the use in interventional
applications. Third, the inherent strong noise and imaging artefacts of US make
a robust estimation of structural image representations challenging.

In this work, we address these challenges by introducing a novel contextual
image descriptor: the “self-similarity context” (SSC). The motivation and deriva-
tion of SSC is presented in Sec. 3.1. A descriptor quantisation and an efficient
point-wise distance metric are proposed. In Sec. 3.2 the employed discrete op-
timisation framework is described and a simple approach is presented, which
ensures symmetric transformations. Quantitative experiments of a neurosurgi-
cal application are presented in Sec. 4 for an evaluation of our approach and a
comparison to other similarity metrics and previously published methods on the
same dataset, based on manual landmark correspondences.
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3 Methods

SSC is estimated based on patch-based self-similarities in a similar way as e.g.
LSS or MIND, but rather than extracting a representation of local shape or
geometry, it aims to find the context around the voxel of interest. Therefore, the
negative influence of noisy patches can be greatly reduced, making this approach
very suitable for ultrasound registration. Spatial context has been successfully
applied to object detection [7] and is the driving force of pictorial structures [3].

3.1 Self-similarity context

Self-similarity can be described by a distance function between image patches
within one image I (sum of squared differences SSD can be used within the
same scan), a local or global noise estimate σ2, and a certain neighbourhood
layout N for which self-similarities are calculated. For a patch centred at x, the
self-similarity descriptor S(I,x,y) is given by:

S(I,x,y) = exp

(
−SSD(x,y)

σ2

)
x,y ∈ N (1)

where y defines the centre location of a patch within N . In [4] and [15], the
neighbourhood layout was defined to always include the patch centred around x
for pairwise distance calculations. This has the disadvantage that image artefacts
or noise within the central patch always have a direct adverse effect on the self-
similarity descriptor. We therefore propose to completely avoid using the patch
at x for the calculation of the descriptor for this location. Instead, all pairwise
distances of patches within the six neighbourhood (with a Euclidean distance of√

2 between them) are used. The spatial layout of this approach is visualised in
Fig. 1 and compared to MIND (showing the central patch in red, patches in N
in grey, and edges connecting pairs for which distances are calculated in blue).
The aim of SSC is not to find a good structural representation of the underlying
shape, but rather the context within its neighbourhood. The noise estimate σ2 in
Eq. 1 is defined to be the mean of all patch distances. Descriptors are normalised
so that max(S) = 1.

Pointwise Multimodal Similarity using SSC: Structural image repre-
sentations are appealing, because they enable multi-modal registration using
simple similarity metric across modalities. Once the descriptors are extracted
for both images, yielding a vector for each voxel, the similarity metric between
locations xi and xj in two images I and J can be defined as the sum of abso-
lute differences (SAD) between their corresponding descriptors. The distance D
between two descriptors is therefore:

D(xi,xj) =
1

|N |
∑
y∈N
|S(I,xi,y)− S(J,xj ,y)| (2)

Equation 2 requires |N | computations to evaluate the similarity at one voxel.
Discrete optimisation frameworks, as the one employed here, use many cost func-
tion evaluations per voxel. In order to speed up the computations, we propose to
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MIND SSC 

Fig. 1. Concept of self-similarity context (SSC) compared to MIND with six-
neighbourhood (6-NH). The patch around the voxel of interest is shown in red, all
patches within its immediate 6-NH are shown in grey. Left: All patch distances (shown
with blue lines) used for MIND within the 6-NH take the centre patch into account.
Right: Geometrical and structural context can be better described by SSC using all
patch-to-patch distances, none of which is dependent on the central patch.

quantise the descriptor to a single integer value with 64 bits, without significant
loss of accuracy. The exact similarity evaluation of Eq. 2 can then be obtained
using the Hamming distance between two descriptors using only one operation
per voxel. A descriptor using self-similarity context consists of 12 elements, for
which we use 5 bits per element, which translates into 6 different possible values
(note that we cannot use a quantisation of 25 because the Hamming weight only
counts the number of bits, which differ). Figure 2 illustrates the concept, which
could also be employed for other multi-feature based registration techniques.

3.2 Discrete Optimisation

Discrete optimisation is used in this work, because it is computationally efficient,
no derivative of the similarity cost is needed, local minima are avoided and large
deformations can be covered by defining an appropriate range of displacements
u. Here, we adopt our recent approach [5, 6], which uses a block-wise parametric
transformation model with belief propagation on a tree graph (BP-T) [3]. The
regularisation term penalises squared differences of displacements for neighbour-
ing control points and is weighted with a constant λ. Not all similarity terms
within the influence region of each control point, but only a randomly chosen
subset of them are taken into account. This concept, which has also been used
in stochastic gradient descent optimisation [8] and in [2], greatly reduces the
computation of the similarity term without loss of accuracy (as shown in [6]).

Inverse Consistent Transformations: We introduce a simple scheme to
obtain inverse consistent mappings, given the forward and backward displace-
ment fields un and vn respectively (which are independently calculated), by
iteratively updating the following equations:

un+1 = 0.5(un − vn(x + un)) (3)

vn+1 = 0.5(vn − un(x + vn))
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Fig. 2. Concept of using the Hamming distance to speed up similarity evaluations.
Continuous valued descriptor entries (here: |N | = 4) are quantised to a fixed number
of bits and concatenated. The similarity of Eq. 2 can then be evaluated using only one
bitwise XOR and bit-count operation.

4 Registration of US and MRI Scans for Neurosurgery

We applied the presented approach to a set of 13 pairs of pre-operative MRI
and pre-resection 3D ultrasound (US) images of the Brain Images of Tumours
for Evaluation (BITE) database [12] from the Montreal Neurological Institute†.
The MRI scans have an isotropic resolution of 0.5 mm and the US are resam-
pled to the same resolution (the MRI scans are then cropped to have the same
dimensions and a similar field of view). Roughly 27 corresponding anatomical
landmarks have been selected for each scan pair by a neurosurgeon and two
experts. The same dataset was recently used by [14], and therefore enables a
direct comparison. They apply multi-feature α-MI [16] with a stochastic gradi-
ent descent optimisation [8], and extend this framework using a self-similarity
weighting within the feature space, calling the new metric SeSaMI.

We use the following parameter settings for the discrete optimisation: three
scales of control point spacings of {6, 5, 4} mm, 50 similarity term samples per
control point and a dense displacement search range of {12, 5, 2} mm (with a
spacing of {2, 1, 0.5} mm). This corresponds to roughly 107 degrees of freedom
for the optimisation. We employ three different similarity metrics: blockwise MI,
MIND [4] and SSC. For the self-similarity calculations a patch-size of 3× 3× 3
voxels and a distance between neighbouring patches of 2 voxels was chosen.
Blockwise MI is computed the same way as global MI [10], but a new joint
histogram is estimated for each control point and each displacement using 100
samples within the cubic influence region of the control point. We empirically
found that 8 histogram bins give best results together with a Parzen window

† Publicly available at www.bic.mni.mcgill.ca/Services/ServicesBITE
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Fig. 3. Deformable registration of 13 cases of MRI-US brain scans, evaluated with ≈27
expert landmarks per case. The registration error of SSC (2.12±1.29 mm) is signifi-
cantly lower than that of MIND (2.45±1.44 mm) and mutual information (3.07±1.74
mm) within the same discrete optimisation framework (p =7×10−4 and p <10−6 re-
spectively). The computation time per registration using SSC and the Hamming dis-
tance (≈20 sec per 3D pair) is more than twice as fast as MI and SSC without quanti-
sation. The use of α-MI with a continuous optimisation approach takes about 120 min.
[14], which is too long for this time-concerning application.

smoothing with σP = 0.5. An optimal regularisation parameter λ = 0.5 was
found for MIND and SSC, and λ = 0.25 for MI. All resulting transformations
are free from singularities (invertible) with an average complexity measured as
standard deviation of the Jacobian of 0.08.

Quantitative Results: The average initial target registration error (TRE)
in our experiments is 6.76±2.20 mm (this value is only 4.12 mm in [14], because
additional US-tracking information is used). SSC achieves the best overall regis-
tration accuracy of 2.12±1.29 mm (see Fig. 3), which is a significant improvement
compared to MIND (2.45±1.44 mm) and mutual information (3.07±1.74 mm).
The much more complex α-MI metric and its SeSaMI variant used in [14] yield
a higher TRE of 2.50 and 2.34 mm, respectively. The computation time of SSC
(20 sec) is smaller than using MI (55 sec) within the same discrete optimisation
framework and much smaller than using α-MI (120 min). Additionally, when
using SSC, the setting of the regularisation parameter λ has a low sensitivity
(less compared to MIND and MI) causing an increase of TRE of only 0.1 mm
when choosing 4× larger or smaller values. Figure 4 shows an example of the
registration problem and the resulting alignment using SSC.

5 Conclusion

This paper addresses the challenging deformable registration of pre-operative
MRI to intra-operative ultrasound for neurosurgery. A novel image descriptor
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Fig. 4. Deformable MRI-US registration results of BITE dataset using SSC with dis-
crete optimisation. The intra-operative ultrasound scan is shown as false colour overlay
over the grayscale MRI intensities. A clearly improved alignment of the ventricles and
the solid tumour is visible after registration (bottom row).

the “self-similarity context” (SSC) is presented, with low sensitivity to image
noise, and a quantisation scheme for fast distance evaluations using Hamming
weights. When used in a discrete optimisation framework with a stochastic sim-
ilarity term sampling, a computation time of less than half a minute is achieved
on a standard CPU and state-of-the-art registration accuracy with an average
error of 2.12 mm, which is a statistically significant improvement over previ-
ous self-similarity based metrics [4] and mutual information. In the future, we
plan a GPU implementation (which could then lead to real-time performance)
and further comparisons to other structural image representations (e.g. gradient
orientation [2]) and the application of our approach to further applications of
image-guided interventions.
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