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Abstract. The modality independent neighbourhood descriptor (MIND)
is a local registration metric that is based on the principle of self-similarity.
However, the metric requires recalculation of the self similarity during
registration as this inherently changes during image deformation. We
propose a self similarity registration method based on the Hessian (HE)
that efficiently deals with the recalculation issue. The representation of
the local self-similarity via the Hessian enables keeping it up to date dur-
ing deformation. As such, the registration procedure is efficient and not
prone to fall in local minima. We have shown that reorienting the hessian
gives a significant improvement (p<0.05) over leaving the reorientation
out. Our technique also has a better performance over the existing MIND
method on the DIR-Lab dataset as well as on abdominal MRI datasets
albeit not significant. Ultimately, we will use the technique to quantify
Crohn’s disease severity based on the relative contrast enhancement in
registered images.
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1 Introduction

Medical image registration is widely used for finding correspondence between
images. Sum of square differences (SSD) and normalized cross covariance (NCC)
are often applied for registering images from the same modality. Alternatively,
mutual information (MI) is frequently used to deal with multi-modal image
registration problems [1–3].

The above, basic similarity metrics are based on global measurements and in
principle do not model spatial variance. However, such variance is known influ-
ence the robustness of non-rigid registration tasks [4]. Accordingly, Gorbunova
et al. [5] proposed a local mass preserving SSD technique for lung CT regis-
tration. Likewise, Song et al. [6] used local cross correltation to accommodate
inhomogeneities of CT scans. Furthermore, Loeckx et al. [4] proposed a condi-
tional implementation of MI, introducing a spatial dimension into the 3D joint
histogram. More approaches combining spatial information into MI can be found
in [7–9].
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It has been noticed [10] that such local estimation can be difficult, though,
due to many false local optima in non-rigid registration. An alternative way of
incorporating spatial variance was based on structural representations of images.
For instance, gradient can be used to find correspondence of images [11, 12].
Moreover, Heinrich et al. [13] proposed a method that relied on orientation
information derived from the structure tensor. More recently, the same group [10]
introduced the modality independent neighbourhood descriptor (MIND) that is
based on the principle of self-similarity. Essentially, this technique assumes that
the local image structure is shared by the images to be registered. The method
yielded reliable registration results accross different image modalities and better
performance than other state-of-the-art approaches. However, the metric requires
recalculation of the self similarity during registration as this inherently changes
during image deformation.

We propose a self similarity registration method based on the Hessian (HE)
that efficiently deals with the recalculation issue. Our method relies on a reori-
entation strategy adapted from diffusion tensor image registration [14]. A key
novelty is that the reorientation of Hessian (ROHE) is integrated in the reg-
istration optimization. We compare our procedure with the MIND method on
the same dataset from DIR-Lab [15] since MIND is also a self-similarity based
method and its performance was previously tested on that dataset. Additionally,
we evaluate the technique on abdominal pre- and postcontrast MRI datasets.
Ultimately, it is our objective to employ the method to quantify the amount of
contrast enhancement in those images, which is known to reflect Crohn’s disease
severity.

2 Methods

2.1 Modality Independent Neighbourhood Descriptor (MIND)

The MIND descriptor is formally defined as :

MIND(I,xc, r) =
1

n
exp(−Dp(I,xc,xc+r)

V (I,xc)
) rεR (1)

in which Dp in (3) is a similarity measure between small patches around a
center voxel xc respectively a neighbouring voxel xc+r, both of which are taken
from a neighbourhood R. Effectively, MIND yields a vector of size R which
represents the local structure information around each center voxel. In (1) n and
V (I,xc) are normalization terms with n the neighbourhood size and:

V (I,xc) =
1

6

∑
rεN

Dp(I,xc,xc+r) (2)

Furthermore, the similarity measure Dp is given by:

Dp(I,xc,xc+r) =
∑
pεP

(I(xc + p)− I(xc+r + p))2 (3)
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representing the sum of squared difference (SSD) between two identically
shaped patches P .

In essence, MIND maps each voxel onto a self-similarity vector that embeds
the local structure. Subsequently, the registration problem is solved by minimiz-
ing the sum of absoluted differences of MIND measures over two images I and
J under a certain deformation function.

2.2 Definition of the Hessian and Reorientation Strategy

An alternative method to measure local structure is based on the Hessian (HE):

HE =

⎡
⎣
Ixx Ixy Ixz
Iyx Iyy Iyz
Izx Izy Izz

⎤
⎦ (4)

The calculation of image derivatives is based Gaussian kernals (width: σg). Typ-
ically, the HE is sensitive to the linelike structures (even structures). It captures
local orientaion which is also covered by MIND.

In Diffusion Tensor Image (DTI) registration, tensor reorientation has been
incorporated in the registration optimization [14]. Thereby the local orientation
can be preserved during the registration and registration efficiency also might be
improved. A standard way to do so is the Finite strain (FS) strategy in which a
rigid rotation component is calculated by decomposing the deformation gradient:

R(x) = (J(x)J(x)T )−
1
2 J(x) (5)

where R(x) in (5) is the rotation matrix in a voxel and J(x) is deformation
gradient (i.e. Jacobian) at that voxel. Subsequently, the diffusion tensor T (x) is
reoriented by:

T ′(x) = RT (x)T (x)R(x) (6)

Our structural representations make that a reorientation strategy is directly
applicable in a new optimization framework. The effect of reorientation on a
HE image is illustrated in 2D in Fig.1. It can be seen in the HE image without
reorientation (b) that there is a disparity with the ’ground truth’ (e), see the
white arrows. Instead, the reoriented image (c) from (b) much closer resembles
the ground truth (f).

2.3 Registration Framework

Inspired by [10] our similarity metric at each voxel is the mean absolute differ-
ences of HE’s:

S(HEf (x), HEm(x)) = mean|HEf (x)−HEm(x)|2 (7)
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Fig. 1. Illustration of the effect of reorientation on the HE. (a) is an example lung CT
image that we rotated by 30 degrees clockwise around the z direction yielding image
(d). Images (b)(c)(e)(f) display the orientation of the first eigenvector derived from the
Hessian; (b) shows a 30 degrees rotated tensor image derived from image (a) (σg = 0.5
calculated without reorientation) and (e) is the ’ground truth’ calculated from (d). (c)
is the result after rotation and reorientation from (a) and (f) is a duplicate version of
(e) just for comparison.

where the HEf (x) and HEm(x) are the Hessian in voxel x from the fixed image
and moving image respectively. We map the fixed image and moving image to
Hessian space and a Gaussian Newton optimisation scheme was used to minimize
following the cost function:

argmin
u

=
∑
x

S(HEf (x), R(x+u)THEm(x+u)R(x+u))2+αtr(∇u(x)T∇u(x))2

(8)
where R(x + u) is the rotation matrix , u is the deformation field fand α is a
parameter that weights a regularisation term.

In the optimizatin step, MIND is recalculated after a certain number of de-
formation steps (more detail can be found in [10]). In contrast, our approach
involving the Hessian enables to incorporate a reorientation term into the cost
function and thus cope with the deformation (Equation (8)). The Hessian is only
calculated once and the deformation of Hessian is embedded in the optimization.
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Table 1. Mean distances(mm) of landmarks in 10 lung CT images: INITIAL is prior
to registration; HE give the outcome based on HE registration without reorientation;
ROHE are the result if reorientation is included; MIND is the outcome using the MIND
framework

Case 1 2 3 4 5 6 7 8 9 10 Mean

INITIAL 4.07 4.40 7.03 9.91 7.51 10.99 11.13 15.06 8.02 7.43 8.56
HE 1.91 1.80 2.30 2.60 3.02 5.13 4.74 9.53 3.14 2.67 3.68
MIND 1.05 1.06 1.23 1.48 1.62 1.61 2.04 3.46 1.37 1.63 1.66
ROHE 1.08 1.06 1.27 1.53 1.56 1.64 1.92 3.26 1.36 1.60 1.62

As such, we can already reckon with an altering self-similarity when determining
Gauss-Newton optimization steps (given by the gradient of Equation (8)). By
doing so it may be expected that the technique is less prone to convergence in
local minima. The interpolation inherent to the registration problem was per-
formed trilinearly in the derivative spaces after which an interpolated Hessian
was calculated.

3 Experiments and Results

3.1 DIR-Lab 4D CT

We tested our registration framework based on the HE on the public dataset
provided by the DIR-Lab at the University of Texas [15]. This data set consists
of thorax CT volumes acquired in inspiration as well as expiration from 10
subjects in which 300 landmarks were annotated by experts. A comparison of
our approaches with the MIND approach are collated in Table 1. Thereby, we
used σg = 0.5 and α = 0.1, all of which were chosen to be comparable to the
MIND approach. .

A two sample t-test was used to compare the registration strategies. Partic-
ularly, the results of ROHE and MIND are significant improvements over the
initial situation as well as registration based on HE without reorientation (all:
p<0.05) . ROHE has lower mean distance than MIND, but this difference is
not significant. Fig. 2 shows a registration case based on ROHE and MIND.
Although the difference in performance is subtle, it can be clearly seen that near
the lung boundary ROHE outperforms MIND (see red arrow). Here, MIND ap-
pears to converge in a local minimum since increasing the number of steps does
not improve the registration outcome. We found similar results on other cases.
Additionally, we calculated the sum of absolute intensity differences (SAD) for
ROHE and MIND, see Table 2, which shows the same trend.

3.2 Pre-contrast and Post-contrast Abdominal MRI

We applied our algorithms to clinical datasets from [16]. From this dataset we
sequentially included the first 5 patients diagnosed with Crohn’s disease . Pa-
tients drank 1600ml of a hyperosmolar fluid (Mannitol, 2.5%, Baxter, Utrecht,
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Fig. 2. Registration comparison for case 4. Top is an overview image, bottom shows
a detail (as indicated). From left to right are images prior to registration, images
registered by MIND and by ROHE, respectively. In all imageshe inhale phase (fixed
image) is displayed in magenta and exhale phase (moving image) is displayed in green.

The Netherlands) 1 hour before acquiring the MRI scans to achieve bowel
distention. MR imaging included a high resolution, 3D T1-weighted spoiled gra-
dient echo sequence with fat saturation (pre-contrast MRI), followed by a free-
breathing 3D+time Dynamic Contrast Enhanced (DCE)-MRI data acquisition
on a 3.0T MRI scanner (Intera, Philips Healthcare, Best, The Netherlands) by
a 3D spoiled gradient echo sequence. A contrast agent (Gadovist 1.0 mmol/ml,
Bayer Schering Pharma, Berlin, Germany) was injected (0.1 ml/kg bodyweight)
during the DCE-MRI acquisition. The DCE sequence was also succeeded by a
high resolution, 3D T1-weighted spoiled gradient echo sequence with fat satu-
ration (post-contrast MRI). A bowel relaxant (20 mg, Buscopan, Boehringer,
Ingelheim, Germany) was administered to the subjects scans to minimize bowel
movement. Registration of the pre and post contrast scans is considered as an
important step to quantify disease severity by means of the relative contrast
enhancement .

Table 2. Sum of absolute intensity differences (×1010) prior to registration (INITIAL)
and after registration based on MIND and ROHE, respectively

Case 1 2 3 4 5 6 7 8 9 10

INITIAL 6.82 11.03 12.86 10.15 10.75 25.29 29.44 44.46 20.83 23.84
MIND 0.84 1.35 1.15 1.54 1.34 5.92 5.76 5.67 3.08 4.15
ROHE 0.78 1.25 1.07 1.36 1.23 5.47 5.10 5.84 2.76 3.71
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Fig. 3. Registration comparison on abdominal imaging data. (a) is a post-contrast MR
image; (b) is sub-regions indicated in (a). (c) is the subregions from pre-contrast MR in
same slice position as (b). (d) - (f) are the color maped versions of the sub-regions prior
before registration (d), after registration by MIND (e), ROHE (f), respectively. The
locally normalized post-contrast MR sub-region is displayed in magenta and the locally
normalized pre-contrast sub-region is displayed in green. (g) quantifies the registration
performance via the the mutual information.

The outcome of two registration approaches on a representative example are
shown in Fig. 3. The terminal ileum containing Crohn’s disease, is indicated
by a red arrow. Fig. 3 (f) results after ROHE based registration yielding best
outcome particularly around this region. What is more, Fig. 3 (g) quantifies
the registration performance via the the mutual information on all cases (since
manually indicated landmarks apeared irreproducible on this data). This figure
also reflects that ROHE predominantly gives the best performance .

4 Conclusion

We presented a novel registration procedure based on the Hessian that incorpo-
rated a reorientation strategy into the registration optimization. The represen-
tation of the local self-smilarity as a tensor enabled keeping it up to date during
deformation. As such, the registration procedure is efficient and not prone to fall
in local minima. We showed that reorienting the hessian gave a significant im-
provement in registration accuracy (p<0.05) over leaving the reorientation out.
Our technique also had a better performance over the existing MIND method on
the DIR-Lab dataset as well as on abdominal MRI datasets albeit not significant.
In the future we aim to differentiate in the weight given to varying structures
(e.g. lines, planes, isotropic structures). Futhermore we will compare our method
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with gradient based methods [11, 12]. Ultimately, we will use the technique to
quantify Crohn’s disease severity based on the relative contrast enhancement in
registered images.
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